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Abstraet The gaund state energy of large polarons is invesligaied by meaos of queered states. 
First we invoduced single-mode squeezed slates and used the variarional method to calculate 
this energy. This gives a result ulal is valid in [he weak-coupling regime and only for very small 
values of the coupling c " t .  In order to improve the result we have considered two-mode 
squeezed states in which the correlation belween phonons is involved. In this way the ground 
state energy is found to be lower than the Feynman result in lhe intermediate-coupling regime 
for rl < 3.7. 

I. Introduction 

The polaron concept was proposed by Landau [ I ]  to examine the self-trapping phenomena 
of an electron in crystal lattices. However, it is usually considered today that the subject 
of the polaron was developed, by the pioneering work of Frohlich [Z], whose formulation 
was based on quantum field theory arguments. An electron interacting with Lo phonons is 
described by the Fttihlich Hamiltonian (FH) 

where p = fik is the electron momentum with band mass m and the hi (b,) are the creation 
(annihilation) operators for an Lo phonon with a wave vector q and energy fro,. The 
interaction of the electron with phonons is represented by the last term, where 

Here V is the volume of the system, a is the coupling strength, and U = (2moo/h)'/z .  In 
(2). the LO phonons are assumed to be dispersionless, i.e. o, = 00. 

Although the FH has not been exactly solved so far, depending on the values of CY, it is 
possible to obtain solutions by various approaches. For a c 1, the weak-coupling region, 
perturbation theories give satisfactory results. For a 6, which is the strong-coupling 
region, the best available result is due to Miyake 131. In the intermediate-coupling region 
between these two, the unitary transformation and variational methods developed by Lee, 
Low and Pines (UP) [4] is a widely used approximation in the polaron theory. Feynman 
[5 ]  has succesfully applied his path integral formulation of quantum mechanics to solve the 
FH for all coupling strengths, and his method is now used as the standard to which other 
theories are compared. 

In recent years squeezed states of the electromagnetic field have become common 
knowledge to those who are interested in quantum optics. These states are non-classical in 
the sense that uncertainty in one variance is compressed at the expense of the complementary 
variance of two non-commuting operators, while keeping their product at a minimum value 
as predicted for coherent states [6]. Similar arguments should be valid for lattice waves in 
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vP = - i ~ o o / q ~ ~ l ~ ) ( 4 ~ a / ~ ) " ~ .  (2) 
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solids. In this connection, such treatments as squeezed states of phonons are succesfully 
applied to small polarons in one dimension [7], to the ground state of a tunnelling particle 
coupled to boson excitation [SI and to acoustic polarons in three dimensions 191. 

In the present work, our aim is to choose a single U) phonon from the phonon cloud 
accompanying the electron, and to form single-mode squeezed states. In order to observe 
the effect of such states on the polaron, in section 2 we calculate within the UP model 
the ground state energy. In section 3 we consider two-mode squeezed states by which the 
correlation between phonons is included in the energy calculation. In the last section we 
compare the approach introduced in the previous sections with different theories and discuss 
the validity of our results. 

2. Single-mode squeezed states 

2.1, The Lee-Low-Pines transformations 

The conservation of the total momentum P allows us to eliminate the electron coordinate 
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r, through the first canon-ical transformation intr@uced by LLP 141 

(3) 

The second transformation used by LLP is 

UZ = ew[E( f ,b J  - f,'bq)] (4) 

where f ,  is used as a variational function to be determined by minimizing the energy 
functional. The last transformation generates coherent states for phonon fields. 

In the present work we are interested in the ground state energy; owing to this fact and 
to make later calculations more manageable we will in what follows take P = 0. 

Under these transformations $e M becomes 

4 

where 

nq = 00 + hq2/2m. (6f) 
The expectation value of the transformed Hamiltonian 'H and its variation with respect to 
f ,  is known as the intermediate-coupling theory. To further this approximation, we will 
introduce a third transformation, by which H2 becomes diagonal. The third transformation 
in this work will be through squeezed states and differs from that of Barentzen [IO]. 
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2.2. Single-mode squeezed state transformation 

Let us now introduce squeezed state transformation for a single Lo phonon mode 

where N is the total number of LQ phonon modes and a crucial factor in determining 
the squeezing angle q4. This angle is assumed to be real to preserve the unitarily of the 
transformation and will be used as an additional parameter to minimize the energy. 

The transformed Hamiltonian under U3 
4 

H = u;'uu, = I;: 
i=O 

where & is the same as HO of (6a) and 

+ O(b4, b,) (9) 
where O(bi.  6,) represents the terms containing all b$ and b4 ordered in normal form, and 
they will vanish on taking the expectation value. The squeezed state vector for the ground 
state of the phonon subsystem is formed as follows: 

I*ph)s = U3b"') (10) 
where the ket on the right is the zero phonon state. To calculate the ground state energy 
functional by these state vectors is equivalent to first transforming ?-I by U3 and then forming 
the expectation value of this transformed Hamiltonian in the zero phonon state. 

In each case we obtain an effective Hamiltonian for the electron 

Heff = HO + s(*phlHZl*ph)s (11) 
and then the ground state energy becomes 

+ N E( 4 :)'I f41z~s inh2(  2) - si*( 3)] 
where for convenience we take E = E / h u ~ ,  vq = Vq/hoo, fi4 = Q,/@. The minimization 
procedure with respect to f4 and v4 gives two coupled equations: 

{ I  + (q/u)' + ( q / u ) * N [ 2 ~ i n h ~ ( ( ~ ~ / N )  - sinh(2vq/N)]}f4 + v: = 0 

exp(4604/N) = 1 +4(~/~)zI f412/ [ l  + (s/u)*I. 
Making use of the smallness of q4/N one can easily obtain 

(130) 

(136) 

f q  = -V;/[I + ( q / u Y  - 2vq(9/u)z] 

v4 = { ( q / u l 2 / [ 1  t (9/u)Z~}a/[ l+ (q/u12 - 2604~q/u)2]2 (14b) 
where a = 3aUo/U. Here U is the volume of the unit cell, and uo = $ ~ ( l / u ) ~ .  In the 
terminology of polarons the mean extension in space of the phonon cloud is called the 
polaron radius. It is also possible to define this quantity as the meansquare deviation of 
the electron from the polaron centre [I l l .  In both cases, a thorough calculation reveals 
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that I/u is approximately equal to the polaron radius. Therefore, vo represents the volume 
corresponding to the polaron radius. 
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With (14ab) the energy expression becomes 

where the second term is the energy due to phonons created in the squeezed vacuum. 
It appears from (14b) that pq is proportional to the coupling constant a; but this does 

not mean that the degree of squeezing increases with that of the coupling strength. qq 
lies in a certain range of values because of the restriction imposed by the q dependence 
and accordingly this sets a limit to the value of a, which results in the validity of the 
approximation. 

It is possible to draw numerically the curve of (04 against q as shown in figure 1. 
It is a continuous function of q for values of a smaller than unity. As it increases 
towards unity, a gap appears, in which CO, takes imaginary values, in contradiction with 
our previous assumption. When the value of a increases further, this gap enlarges in q with 
the consequence that qq finally takes a single value at q = 0, and vanishes at the other end, 
i.e. as q goes to infinity. 

Figure 1. 'p, plotted against q/u for various values of 
a. Note that qq is equal to a a! q / u  = 0. 

Figure 2. qq plotted apainsl q/u for a = 0.5. The 
fine curve is the mull fromm the continued fraction 
after fint iteration. The bold w e  is the result of the 
numerical calculation. After three iterations the WO 
cwes mincide. 

In view of the above argument we conclude that the single-mode squeezed state approach 
is meaningful only for values of a smaller than unity. As a matter of fact, pq of (14b) is a 
continued fraction, and can be calculated by iterative methods to a certain accuracy in case 
of small values of a .  Figure 2 shows the result of such a calculation. Once (0, is known, 
the sums of (15) can be easily calculated and the resulting ground state energy is 

(16) 
Here the first term is the well known LLP resuls the second and third terms are the corrections 
of the present work. Although this result shows a certain amount of lowering in the ground 
state energy, unfortunately it is valid only for very small values of a. This restriction arises 
because the size of weakcoupling polarons is very large in comparison with the dimensions 
of the unit cell and a is the product of w/v and a. The reason for this poor result can be 

,?? = -a(] + 0.0391~ + 0.0121Q2 4- . . .I). 
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amibuted tc the correlation between the modes, which is absent in the single-mode case. 
Therefore tc improve this approach, we next consider two-mode squeezed states in which 
the phonon subsystem is in a correlated state. This has been recently applied to a model 
system with strong electron-phonon coupling [12]. 

3. Two-mode squeezed states 

Let us consider two LO phonon modes specified by the wave vectors q and q', which 
of course have the same range of allowed values. In order to take into account the 
correlation xtween these two relevant modes we propose two-mode squeezing by the 
following trmsformation: 

where now he squeezing angle 9q9' depends on q and q'. and is defined as an element of 
a symmetrical 2 x 2 matrix with zero diagonal elements [13]. 

Now tht: squeezed vacuum is formed by means of the vacuum state for the phonon 
subsystem, 

1WIlph)s = Udvac). (18) 
Since two L3 phonons are involved in the trial wave function it is essential to rewrite the 
Hamiltonian consistently in a way to reflect these features of the phonon cloud. As before, 
we try to di.igonalize H2 of (6). and therefore the relevant Hamiltonian is written 

Now the expectation value of the energy, within a certain approximation (see the appendix) 
is 

E ( f ( 1 ~ 9 ~ ~ ' )  =-Cfiq1fqI2+ ~ ~ ~ q ~ ~ f q ~ ~ Z + ~ ~ ~ ~ q f q f H C ) + ~ ~ ( ~ q ~ f q ~ + H C )  
1 1 1 1 

2 9  (I' P 9' 

It should be noted that the last three terms do not contain a factor N in conhast to the last 
term of (121. This is because of the second sum over q that will provide this factor. The 
minimization of this energy with respect to f 9  and 9 q q p  gives 
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It is easy to show that inserting (21a.b) into (20) one can obtain the energy as follows: 
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(22) 
Calculation of this energy requires the solution of two coupled equations (21a,b) for f q  
and qqq,. In view of the difficulty of solving them exactly, we try to get results to a first 
approximation. In the first instance we put (21a, b) in the following form: 

fq = -2 !7* - - 1 c- -cosyf ;T  44 '  2%q' 
62, d, q, U U 

vqq' /N = - [2 (q /u ) (q /u )  cosy/(% + f i q , ) ] f p f q ,  (23b) 

where cosy = cos 0 cos@' + sin 6 sin 6'' cos(# - 6'). Again, to obtaim the above results, we 
used the first terms in the expansion of the hyperbolic function in powers of q q q , / N  that 
are very small. Now, let fa be choosen as -P/aq, corresponding to the unsqueezed case, 
then it can be used in (23a.b) to obtain new f q  and qqq'. 

Inserting these new values of f, and qqd into (22) one can obtain the ground state 
energy 

where x and x' are equal to q/u  and q ' / u  respectively. After taking integrals we finally 
obtain 

k = -a - 0.0135a2+ O(a3). (25) 
Here the first term is the well known result of the intermediate coupling theory; the second 
term is the correction due to the two-mode squeezing process. 

This result agrees formally with the existing works where the differences of the 
approximation appear in the coefficent of a', which is 0.0123 in the Feynman result, 0.0126 
in that of Barentzen. 

4. Discussion of results 

In the present paper we have studied the ground state energy of large polarons by making 
use of squeezed phonon states. First we formed single-mode squeezed states by which the 
energy turned out to be valid for a < 1, where a = 3avo/v. When the electron-phonon 
interaction is weak, the ratio of ~ / v  is large; consequently the resulting ground slate energy 
is limited to a narrow region of a, contingent upon %/U. If we take this ratio arbitrarily to 
be about, for example, IO, then this energy can be used for the region a c A. The result 
(16) is to be compared with the exact result as obtained from fourth-order perturbation 
theory 1141: 

(26) 
where a < I .  The present result is lower than (26), but it is valid for very small values of 
a as discussed above. 

In section 3 we have therefore generalized this method to the case of two-mode 
squeezing. In this way it has become possible to lake into account the correlation between 
the phonons. The energy of (25) is lower than the result of Feynman and those of other 
works with the exception of that by Larsen [IS]. where the correlation between phonons 

I? = -a - 0.01592a2+ 0(a3) 
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is more carefully handled. The last approach gives the same result as (26) in the weak- 
coupling limit, and the numerical results for the ground state energy in the intermediate 
regime are slightly lower than those given by (25) and valid for 01 c 2.5. 

In order to judge the validity of the approximation in the present work, let us combine 
f, and p,,, of (23a.6) to obtain a relation for f,, 

This is still an exact result. Variational techniques of various types used in the intermediate- 
coupling regime exhibit a critical behaviour in which a free polaron undergoes a formal 
phase transition from an itinerant state to a localized one at a critical value a,. This feature 
is observed as discontinuous changes of the polaron ground state energy and its first and 
second derivatives with respect to (Y. However, as first pointed out by Peeters and Devreese 
1161, the existence of the phase transition is an artifact of the approximation used and not 
a pertinent property of the FH. In fact, recently the absence of such phase transitions in 
polaron systems was rigorously proved [ 171. In our case, the zero of the denominator of 
(27) causes a discontinuity in fq and consequently in the energy and its derivatives, and 
will give a critical value ( Y ~ .  but it  Seems unlikely that this can be considered as a phase 
transition, and furthermore our result is free from this effect due to the approximation made 

The first-order approximation in the present work corresponds to taking f,, = -!$/b,, 
in the right hand side of (27) and then expanding it in powers of a, on the assumption that 

on fp. 

This defines a range for (Y where the approximation is valid. However, in this form it is 
impossible to obtain a meaningful result; we therefore arrange (28) in a convenient form 
and take the sum over q of both sides. The right hand side diverges at the upper limit; 
corresponding to an approximation that is valid for all values of (Y, which is obviously not 
correct. We therefore introduce a weight function g(q) into both sides to obtain a convergent 
result. With this auxiliary function, (28) becomes 

If we choose g(q)  = l/d{, we obtain a finite result depending on the value of p. For 
B = 2. (29) gives the lowest value for a: o( c 3x2/8 = 3.7. if B is increased, this value 
increases and hence we can take a c 3.7 as the lowest upper bound of the coupling constant 
below which our approximation can be safely used. 

We conclude from our investigation that squeezed states which provide innovations in 
quantum optics can play a major role in condensed matter physics. In the present paper we 
have considered a squeezed state approach for the large polarons. In that connection the 
self-energy of the polarons has been calculated accurately by means of squeezed states; in 
particular two-mode squeezed states in which the correlation between phonons is involved 
in a natural way are successful, comparing with other sophisticated works. 

Appendix 

The two-mode squeezing angle v,,, introduced in (17) is defined as the elements of the 
symmetrical matrix @ 
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with the properties qqq' = qqfq, p,, = pqsq, = 0 [13], as well as 9,k = (oq,k' = 0 in the 
present case. 

In consequence of the properties of the matrix 0, the transformed operators take on the 
following forms: 

UT1bqU3 = T[b,cosh(?) + b i , s i n h ( F ) ]  
0 

where all the 0 functions of operators in normal order vanish when we take the expectation 
value of HZ with the vacuum state. For the sake of simplicity we take k = q in the 
sum of (A5) and A' = q in (A6). and the ground state energy has been calculated in this 
approximation. Because of the properties of 0 the term arising from (A7) vanishes and 
gives no contribution to the energy. 
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